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Towards Biological Detection Dispersing Quantum Dots onto the Microdisks :
the Infusion Method
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Simulations are made using Lumerical, a software based on FDTD (Finite Difference Time

ObservatiOIl Of the WhiSp ering Gallery MO deS SpeCt ra Domain) calculations to get the electric field locally. Here the image shows the spatial

distribution of the real part of the electric field for a given wavelength in a microdisk.
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Excitation and collection are realized sideways to collect the
leaks of the WGM. A polarizer was used after the dichroic to
distinguish TE and TM modes. A confocal detection is used [ e
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Effect of the microdisk diameter on the The simulated electric field spreads outside the microdisk on a few hundreds
free spectral range TE and TM modes see slightly different effective nanometers. This represents the evanescent wave which we want to use for biological
refractive indexes, which shifts the position of the detection.
modes. From the spectral separation between two
3.0 polarization modes, we deduce a difference of effective
= refractive index of 0.006 between TE and TM modes.
O 2.5
av}
= 2.0 The effect of the size on the effective o
2 ] refractive index Conclusions
Z 1621 - optimization of the fabrication of microdisk by
= - .
z i photolithography
= L 1.581 i . . .
E - homogeneous incorporation of QDs into the
2 s microdisks obtained thanks to surface modification
lenoth <§ 1.52 1 of QDS
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The continuous lines represent the exp.erimental spectra while q>) 1.481 - FDTD modeling of the effect of polarization and
the dashed lines represent the simulations. The Free Spectral @ 1.46 . . . .
Range increases as the perimeter diminishes in accordance =R | microdisk perlmeter on WGM propertles
with our FDTD Simulations. Q factors as high as 6000 where +  Haperimentel Values .
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e N Cavity Perimeter (jim) - Lasing operation of QD-labeled microdisks
The usefull equations The difference of effective refractive index according to the - Bio-functionalization towards blOSGIlSlIlg
microdisks size is not due to an actual change of refractive index - Shape modifications of the microdisks to improve mode
22 A\ of the microdisks, but to the spatial extension of the modes that f t
AN\ = . Q= — extend more outside of the microdisks when they get smaller, conlnemen
Perimeter * neg s O\ leading to a diminution of the effective refractive index.

Q : quality factor
n.g : effective refractive index
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