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INTRODUCTION PROJECT GOALS

To develop new functional materials, nanoscopic scale architecture ~ We alm to synthesis of versatile and functionalized building-
control is necessary’. As a bottom-up synthesis strategy, molecular blocks which self-organize on graphenoid surfaces. We are mainly
self-assemblies on surface have been explored, and have demonstrated  interested in:

good control of patterning on various surfaces®. From these surfaces;

graphene is of interest due to its versatility and potential in future Tuning the surface self-assembly via the functionalisation of the
semiconductive devices3. The work presented here describes the molecular building blocks

functionalization of a graphenoid surface via a supramolecular Grafting a fluorescent functionality decoupled from the surface
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Graphene

Studying by Scanning Tunnelling Microscopy (STM) the topology

of the molecular 2D-assemblies STM representation at solid-liquid interface

Design strategy and syntheses 50 g scale

These 'smart’ building-blocks were designed with the aim to develop a
o o . OH
homogeneous, functional, integrated self-assembly on a graphenoid surface. 1, cat, Br, Cs,CO;
With this molecular design strategy we are able to fine-tune the self-assembly, H,SO, 85°C, 8h. DMF, reflux, 2h20 Quinoline, 200 °C, 12h
orientation and functionality via modification of: O t-Bu \Q/t-'*u
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Functionality: a perylene (PDI); with steric Do - Synthesis : gram to milligram scale (starting materials = final products) NH,
hlndrance to avoid its assembly on the surface. It Bk? OO  Sensitive step: cyanation (yteld can vary from 20 to 80 %) N\H N, E O/©

s a strongly fluorescent component. A
donor/acceptor unit could replace it.  Solubility issues = for PDI (3 first steps), and all of the ZnPcs

Linker
Linker: a pyridyl derivative; decouples the N .
functionality from the surface. Orientation and |N/ o w
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distance can be controlled by modifying it. Pedestal 10 g scale 100 mg scale . . . . |
R R Br OMe 4 steps 1) Lics), ) Zn(0Ac), Nae '
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supramolecular self-assembly on the surface. A == ’ ' ’
non-functionalized phthalocyanine was also used

In host guest systems. e ?;)hggronaphthalene

Self-assembling properties
The following STM images are monolayers of several molecular pedestals We then studied the formation of the ZnPc-PDI complexes in solution. Titration experiments were performed by 'H NMR absorbance,
on Highly Oriented Pyrolytic Graphite (HOPG) surfaces. and fluorescence.
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2 o ° \ \N /
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synthesized as well as Surface by STM. The lattice parameters n-stacking. The association of PDI

several perylene diimides are as expected; proportional to the with ZnPs comes from metal-ligand NEW pedestals

with different linkers. alkyl chain lengths on the zinc interactions.
phthalocyanines.

Functionality with one linker

Titanyl phthalocyanine Tetraalkylated porphyrins Synthesis of
(TiOPc) on surface to replace ZnPc pedestals asymmetric PDI
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