Damaging polyamide 6,6 with road salts

Renault Group

E. Lay¹, *B.* Bresson², *P.* Furtwengler³, *L.* Gervat³, *A.* Colin¹ and *C.* Creton²

¹ Laboratoire Matériaux Innovants pour l'Energie, ESPCI Paris PSL ² Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris PSL ³ Renault, Technocentre, Ingénierie des matériaux

ESPCI RE PARIS PSLE

Polyamide 6,6 in automotive context

Well-known materials for numerous plastic parts

- High mechanical resistance (E = 3 GPa, 85 MPa yield stress)
- Relatively high cristallinity rate: 40-50%

Targeted properties

- High mechanical resistance
- Durability
- Recyclability •
- Affordability

Drawbacks

- Hydrophilicity and swelling^[1]
- Environmental stress cracking^[2] (ESC):

Hypotheses on ESC mechanisms^[3]

- Decrease in surface tension
- Plasticization and swelling caused by the environment

Project goal

Understand the damage mechanisms of PA 6,6 induced by solutions of selected metal salts (NaCl, CaCl₂)

Conclusions

- Without applied stress, the observed behaviors are only related to the tuning of the water activities by the different salts
- Significant applied stress seems necessary to generate stress cracking on PA 6,6 films inducing 2 different types of behavior
- The effects of ions seem mainly related to their chemical affinity with the PA matrix