Synthesis of Cadmium based nanoplatelets and tuning of the optical properties through the thickness

Nicolas Moghaddam, Sandrine Ithurria
Quantum Dots technology
⇒ 3D CdSe semiconductors NPs

Monochromatic emitteurs
⇒ pure color

Color is size depending
⇒ Quantum confinement

Happy guy

⇒ Jimmy TAN, Samsung Head of consumer electronics Malaysia

⇒ Presentation of QLED TV improved technology in 2017 (first in 2013)
Quantum Dots technology ➔ 3D CdSe semiconductors NPs

Monochromatic emitteurs ➔ pure color

Color is size dependent ➔ Quantum confinement

- In a confined regime ➔ 1 dimension smaller than Bohr radius
- Modifications of state densities ➔ Optical properties
Quantum Dots technology ➔ 3D CdSe semiconductors NPs

Monochromatic emitteurs ➔ pure color

Color is size dependent ➔ Quantum confinement

- NPLs ➔ Narrower optical features
- Confinement ➔ Thickness ➔ Controlled at the atomic scale
Synthesis of Nanoplatelets

- Direct synthesis 2 to 5 ML
- Thickness controlled at the atomic scale
- Oleic Acid colloidal stability

Cadmium precursors:
- \(\text{CdAc}_2 \), \(\text{Cd(Myr)}_2 \), \(\text{Cd(Prop)}_2 \)...

Chalcogenide precursors:
- \(\text{TOPSe} \), \(\text{TOPTe} \)...

CdSe 3 ML
- 4 planes of \(\text{Cd} \)
- 3 planes of \(\text{Se} \)

Zinc-blende
- \(100 \times 50 \times 1 \text{ nm} \)
Optical Properties of 2D NCs

- Optical properties monitored with the thickness
- Narrow optical features and no inhomogeneous broadening

Next challenge IR

- Smaller BandGap
- Thicker NPLs

MOGHADDAM JED 2020
Many thanks to Corentin Dabard, Marion Dufour, Hong Po, Emmanuel Lhuillier, Sandrine Ithurria

From N to N+2 monolayers NPLs starting with 3 MLs NPLs by surface energy modification !!!

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 853049)